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Bányai M, Koman Z, Orbán G. Population activity statistics
dissect subthreshold and spiking variability in V1. J Neurophysiol
118: 29–46, 2017. First published March 15, 2017; doi:10.1152/
jn.00931.2016.—Response variability, as measured by fluctuating
responses upon repeated performance of trials, is a major component
of neural responses, and its characterization is key to interpret high
dimensional population recordings. Response variability and covari-
ability display predictable changes upon changes in stimulus and
cognitive or behavioral state, providing an opportunity to test the
predictive power of models of neural variability. Still, there is little
agreement on which model to use as a building block for population-
level analyses, and models of variability are often treated as a subject
of choice. We investigate two competing models, the doubly stochas-
tic Poisson (DSP) model assuming stochasticity at spike generation,
and the rectified Gaussian (RG) model tracing variability back to
membrane potential variance, to analyze stimulus-dependent modula-
tion of both single-neuron and pairwise response statistics. Using a
pair of model neurons, we demonstrate that the two models predict
similar single-cell statistics. However, DSP and RG models have
contradicting predictions on the joint statistics of spiking responses.
To test the models against data, we build a population model to
simulate stimulus change-related modulations in pairwise response
statistics. We use single-unit data from the primary visual cortex (V1)
of monkeys to show that while model predictions for variance are
qualitatively similar to experimental data, only the RG model’s
predictions are compatible with joint statistics. These results suggest
that models using Poisson-like variability might fail to capture im-
portant properties of response statistics. We argue that membrane
potential-level modeling of stochasticity provides an efficient strategy
to model correlations.

NEW & NOTEWORTHY Neural variability and covariability are
puzzling aspects of cortical computations. For efficient decoding and
prediction, models of information encoding in neural populations
hinge on an appropriate model of variability. Our work shows that
stimulus-dependent changes in pairwise but not in single-cell statistics
can differentiate between two widely used models of neuronal vari-
ability. Contrasting model predictions with neuronal data provides
hints on the noise sources in spiking and provides constraints on
statistical models of population activity.

spiking variability; phenomenological models; population activity;
noise correlations; visual cortex

MULTINEURON ACTIVITY PATTERNS are critical features of the
neural code. Discovering the organizational principles of these
activity patterns requires the characterization of the response

statistics of neuronal populations. Traditionally, neuronal re-
sponses have solely been characterized by the mean activity
(Adrian 1926). However, prediction of future states of the
population activity, prediction of activity of left-out neurons,
obtaining low-variance estimates of physical/cognitive vari-
ables, or revealing hidden processes underlying the observed
neural dynamics requires the characterization of higher order
moments of response statistics. Indeed, stimulus and cognitive
state dependence of variability (Churchland et al. 2010; Finn et
al. 2007; Goris et al. 2015) and correlations (Berkes et al. 2011;
Cohen and Kohn 2011; Ecker et al. 2010, 2014; Fiser et al.
2004; Rabinowitz et al. 2015) has recently drawn considerable
attention and has been the subject of theoretical analysis
(Haefner et al. 2013; Moreno-Bote et al. 2008).

Instead of a complete characterization of the multivariate
activity distribution, approximations are used, which charac-
terize the distribution with a limited set of parameters. Maxi-
mum entropy models (Schneidman et al. 2006) or their variants
(Lin et al. 2015; Macke et al. 2011; Tkačik et al. 2010; Yu et
al. 2011) directly parametrize some low-dimensional features
(the marginals) of the response statistics, while latent variable
models trace the covariability back to changes in a lower-
dimensional space (Yu et al. 2009). A critical difference
between these models lies in the assumed source and form of
variability. The source of variability in neural responses is
diverse and can be traced back to bottom-up influences (An-
derson et al. 2000), effects of unrecorded neurons of the
population, top-down influences (Goris et al. 2015; Renart and
Machens 2014), and mechanisms intrinsic to individual neu-
rons (Faisal et al. 2008). These different sources of variability
imply different combinations of private and shared variabilities
and different forms of dependencies on stimulus attributes;
therefore interpretation of observed patterns strongly depends
on the assumptions on the properties of variability.

Detailed single-cell models for the building blocks of pop-
ulation models require a prohibitive amount of data, and
therefore phenomenological models are used instead, which
can be directly constrained by the details of single-cell statis-
tics. Spike count measurements are characterized by a distinc-
tive linear relationship between mean firing rate and spike
count variability (Tolhurst et al. 1981). The resemblance of this
statistic to the characteristics of the Poisson process motivated
the use of Poisson process for modeling spike count variability,
where variability arises as a consequence of a renewal process
with independent spikes sampled in finite time windows with a
given expected value but independent across time windows.
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This form of single-cell statistics is central to many theories of
coding (Churchland et al. 2011; Ecker et al. 2016; Froudarakis
et al. 2014; Jazayeri and Movshon 2006; Ma and Jazayeri
2014; Pillow 2007; Simoncelli et al. 2004). Modeling neural
variability by directly assuming Poisson variability has proven
efficient in identifying the effect of attention both at the level
of single cells (Goris et al. 2015) and at the level of pairwise
correlations (Ecker et al. 2010; Goris et al. 2015; Rabinowitz et
al. 2015).

The Poisson model assumes that variability is introduced
beyond the firing rate: once the instantaneous firing rate has
been established through the interactions of the neuron, spikes
are generated in a stochastic manner. However, neurons are
known to exhibit variability at their membrane potential
(Carandini and Ferster 2000; Finn et al. 2007; Haider et al.
2013; Tan et al. 2014), i.e., at a stage before the generation of
spikes, and the spike generation process has been shown to be
highly reliable (Mainen and Sejnowski 1995). The rectified
Gaussian model (RG) formulates an alternative account of
single cell response statistics, which is compatible with the
Poisson-like aspect of variability but assumes that variability is
dominated by processes before the stage of spike generation
(practically at the level of membrane potential) but assumes
spike generation to be close to deterministic (Carandini 2004;
Dorn and Ringach 2003). This model has also proven success-
ful in accounting for patterns in mean spiking responses of V1
neurons (Finn et al. 2007). The Poisson-like spiking model and
the RG model are two extremes of a spectrum of phenomeno-
logical models that account for the basic single-cell statistics of
cortical neurons while also being capable of describing pair-
wise phenomena. It is unclear, however, how well the alterna-
tive models of spike count variability can predict the patterns
in response correlations as well as the patterns in mean re-
sponses and response variance.

In this study we contrast competing approaches proposed for
describing spike count variability and use their predictions on
pairwise response statistics. We define the doubly stochastic
Poisson (DSP) model and the RG model to analyze the rela-
tionship between membrane potential statistics and spike count
statistics. In particular, we focus on the joint spiking statistics
of a pair of neurons to demonstrate a dissociation between the
two models based on changes in spike count correlation result-
ing from changes in pairwise membrane potential statistics.
Using these analyses as a starting point, we simulate stimulus-
dependent modulation of spike count statistics for both of the
models in populations of model neurons and compare the
predictions to orientation-dependent and contrast-dependent
changes in the activity statistics of extracellularly recorded V1
neurons in awake monkeys. We argue that changes in stimulus
attributes give rise to distinctive patterns in response correla-
tions that are compatible with the RG model but contradict the
DSP model. This dissociation provides constraints to the con-
struction of descriptive models of population activity when
bottom-up effects modulate the firing statistics.

MATERIALS AND METHODS

Model of membrane potential responses. We modeled the re-
sponses of direction selective neurons of V1 at the level of membrane
potentials. Characterization of the response statistics of neurons re-
quires modeling not only the first-order statistics (mean) of membrane
potential but also higher level statistics. Instead of aiming for a

complete description of the response statistics, we focus on the
second-order statistics of neural responses. This is motivated by two
considerations: 1) experimental designs are typically limited in terms
of the number of trials, rendering higher-order joint statistics of
neurons hard to estimate; and 2) pairwise statistics are the simplest
measure of population activity going beyond individual cell response
properties and are already able to capture definitive signatures of
population-level cortical computation (Haefner et al. 2016; Orbán et
al. 2016; Singh et al. 2016).

The main determinant of neuronal responses is the receptive field
that defines what stimulus features the neuron is sensitive to. We
based the responses of model neurons on the most widely studied of
these changes in V1, the orientation dependence of responses: the
tuning curve was used to summarize systematic modulation of the
mean response as the direction of an oriented stimulus is changing.
Within-trial and across-trial fluctuations in membrane potential re-
sponses of individual cells are prevalent in direction-selective neurons
(Tomko and Crapper 1974). Furthermore, variations of membrane
potential responses are not independent: deviations from the mean
responses tend to be correlated across neurons (Yu and Ferster 2010).
We summarized individual and joint variations in membrane potential
responses in terms of a probability distribution that defines the
probability with which any given combination of membrane potentials
is present. We represented variances and correlations through a
covariance matrix, which together with the mean membrane potential
response define a Gaussian distribution. We obtained the response of
the population of neurons at any given time bin b by drawing an
independent sample from this distribution:

ub � N(ub; �, Cmp) (1)

The mean of the distribution, � � �N, determines the trial-aver-
aged membrane potential level of each neuron, and the sequences of
individual samples give rise to within-trial variability. The full sec-
ond-order structure of membrane potential incorporates temporal
dependencies beyond the spatial structure. A sample from the Gauss-
ian distribution in our model specified a single membrane potential
value in a 20-ms bin, assuming that there is no temporal dependence
on longer timescales, and omitting variability on shorter ones. Our
choice of independent samples was motivated by the typical support
of the autocorrelation function of membrane potentials, which is on
the scale of 20 ms (Azouz and Gray 1999), and therefore membrane
potential values beyond this scale can be regarded as independent.

Similar to systematic changes in trial-averaged mean membrane
potential responses, variances and covariances are also characterized
by systematic changes (Finn et al. 2007; Tan et al. 2014). As a
consequence, response variance and covariance were not taken to be
fixed parameters of the model but were dependent on the stimulus.

Intensity of spike responses of neurons is determined by the
instantaneous firing rate function. We obtained the mapping from
membrane potential to firing rate by the firing rate nonlinearity, for
which we take a parametric form from the literature (Carandini 2004),
parametrized identically for each neuron:

rb � k[ub � Vth]�
� (2)

Vth denotes the membrane potential threshold under which the
firing rate is zero. Above the threshold the firing rate is a power law
function with exponent �, where � � 1 corresponds to a linear
mapping. Gain parameter, k, indicates how many spikes are to be
expected within a single time bin (which is always 20 ms in our
study). Using this mapping, we obtain an instantaneous rate in every
time bin, which serves as an intermediate quantity between membrane
potentials and spikes. The parameters in the rate model are chosen to
be typical to V1 based on Carandini 2004. The values used throughout
this paper are Vth � 0 (the threshold only contributes to the rate
through the difference with the membrane potential, thus we need to
choose � and Vth together to produce realistic membrane potential
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dynamics), � � 1.4, and k � 0.4, which together with the 20-ms time
bin corresponds to a rate of 20 Hz, typically observed in V1 in
response to a high-contrast stimulus of parameters preferred by the
tuning curve of the cell (Finn et al. 2007).

Since the focus of the study is to understand the implications of
membrane potential fluctuations on spiking statistics, we do not seek
to find a match between membrane potential recordings and the
model. Rather, membrane potential statistics is assessed in terms of its
consequences on spiking statistics. The two competing models, the
DSP and RG models, differ in the way how spikes are generated. A
detailed description of the models follows but differences in the way
spikes are generated from firing rates are summarized in a cartoon
depicting the main components of the models (Fig. 1).

Spike frequency adaptation. Phenomenological models of spiking
are constrained to models with limited number of parameters which
are feasible to fit and fitting requires limited data. These models,
however, omit some dynamical properties of the neurons that can
affect the response statistics. Since adaptation introduces a joint
modulation of firing rates it potentially has an effect on the correlation
structure of the neurons. We introduced firing rate adaptation by
modulating the firing rate of the neurons by an additive term that
decayed exponentially in a simulated trial. The relative modulation of
the firing rate was 100% and a decay time constant of 40 ms was used
(Ahmed et al. 1998).

Doubly stochastic Poisson spike-generation model. The firing rate
nonlinearity establishes the link between average membrane potential
and average firing rate. A widely used approach (Gur et al. 1997)
assumes that the firing rate determines the probability with which a
spike is generated in any particular time window. When these prob-
abilities are independent across time we formally obtain the Poisson
process. In this model, spike counts are sampled from a Poisson
distribution, parametrized by the instantaneous rate, independently for
each neuron n.

sb
n � Poisson(sb

n;rb
n) (3)

In summary, the Poisson model of spiking, the DSP model, relies
on two sources of variability: 1) membrane potentials are stochasti-
cally generated and these samples are correlated to represent covari-
ability of neuronal responses; and 2) a second source of stochasticity
comes from the generation of spikes, which introduces noise that is
independent across neurons.

Rectified Gaussian model. The DSP model assumes that the firing
rate defines the probability with which spikes are generated in a given
time window. Inspired by the relatively little stochasticity found in
sensory neurons in vitro (Mainen and Sejnowski 1995), an alternative
model can be formulated, which assumes a deterministic process for
spike generation (Carandini 2004). Self-consistency requires that the
average number of spikes with constant stimulus is equal to the firing
rate. A model that assumes no further source of variability but fulfils
the self-consistency criterion can be formulated by integrating the
firing rate over time and generating spikes whenever the integral
crosses integer values. If we consider the rate to be constant within a
time bin b, scaled appropriately with the base rate parameter k, the
integral becomes a finite sum, for neuron n:

st
n � ��

b�1

�

rb
n� (4)

The spiking model defined this way, the RG model, is formally
equivalent to an integrate-and-fire neuron model without refractory
period with the addition of the firing rate nonlinearity. The main
determinant of variability in the RG model is coming from the
variability present in the membrane potentials. An additional, though
minor, source of variability for the timing of spikes originates from an
uncertainty of the state of the integrator at the beginning of a trial.
This component is small relative to the stochasticity of the membrane
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Fig. 1. Schematic illustration of the rectified
Gaussian (RG) and doubly stochastic (DSP) mod-
els. A: membrane potential responses are charac-
terized by a mean activation and a stochastic
component that varies over time. The mean is
assumed to be stimulus dependent and is deter-
mined by the orientation tuning curve. Impor-
tantly, the stochastic component is not indepen-
dent but is correlated among neurons. B: firing
rates are calculated from membrane potentials by
transforming them using the firing rate nonlinear-
ity. C: spike counts are specific to the spiking
model used. Spike counts are obtained by sum-
ming action potentials generated throughout a
trial. D: according to RG spiking model, spikes
are generated by integrating the firing rate and
deterministically registering a spike every time
the integrated rate crosses an integer value. E: in
the DSP spiking model, spike counts are stochas-
tically generated: the time varying firing rate
(normalized by the time window being consid-
ered, diamonds, left) determines the mean of the
Poisson distribution (diamonds, right), which as-
signs probabilities to the number of spikes to be
generated in the time window (right).
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potentials at high firing rates but can affect not only spike timing but
also spike counts at low firing rates.

To gain additional insight to the interdependence between mem-
brane potential and spike count statistics in the two spiking models,
moments of the firing rate can be calculated. For integer exponents (�)
of firing rate nonlinearity and normal-distributed membrane potential
Fano factor and pairwise correlations can be calculated for the firing
rate of threshold-power-law neurons (Hennequin and Lengyel 2016).
The rate moments are close approximations of the RG spike count
moments, as the two distributions only differ in a quantization step.
These calculations can be extended to assess the response statistics in
a DSP model by using the law of total covariance when combining the
rate covariance with the covariance matrix implied by Poisson
variability.

Hodgkin-Huxley model neuron. To provide an insight how active
membranes behave under the conditions investigated with the DSP
and RG models, we set up a two-neuron simulation in which corre-
lated current injection was provided to a pair of identical Hodgkin-
Huxley neurons (Hodgkin and Huxley 1952). Similar to the DSP and
RG models, samples were drawn from a bivariate normal distribution
in every 20 ms. Both mean and variance of the normal distribution
were identical for the two neurons; 500-ms trials were simulated and
firing rate and spike count correlations were calculated from repeated
trials.

Simulation of population measurements. To compare the predic-
tions of the RG and DSP models with experimental recordings of the
activity of a neuron population, population models were constructed
and spike response statistics of the two models were contrasted with
experimental data. Predictions of the models could be directly tested
by recording pairs of neurons and assessing the changes in pairwise
statistics upon stimulus manipulations. A direct mapping from stim-
ulus to spiking responses requires a very precise receptive field
characterization for the pairs and a precise control of the receptive
field content. Since characterization of correlations requires tens of
trials, ensuring invariant stimulus content across these trials is partic-
ularly challenging since a minor change in the fixation would intro-
duce biases in the measured noise correlation. Therefore, instead of
requiring neurons with well-characterized receptive fields, we chose
an alternative approach in which variations in tuning characteristics
can be accounted for. An additional benefit of the approach is that data
is abundantly available and the analysis can be easily generalized for
other sensory modalities.

Determining the second-order statistics of membrane potentials for
a population of N neurons requires the specification of their means,
variances, and correlations, as specified in Eq. 1. We seek to model
population activity in response to oriented grating stimuli. Mean of the
membrane potential response �n for cell n is determined by the
orientation of grating stimuli through the tuning curve. Each neuron is
characterized by a preferred orientation that corresponds to the stim-
ulus orientation at which the tuning curve has a maximum. Preferred
orientations are sampled independently for each neuron from a uni-
form distribution. The height of the tuning curve is varying from
neuron to neuron and is sampled from a Gaussian distribution with a
standard deviation of 0.1. The width of the tuning curve is fixed at
SDTC � 0.2�. The time-varying stochastic component of the mem-
brane potential response is coming from a Gaussian distribution that
is characterized by its variance. The level of variance is inhomoge-
neous across the population and is set randomly by sampling an
inverse gamma distribution. Parameters of the inverse gamma distri-
bution are the shape and scale parameters, with values three and four,
respectively, chosen to reproduce the scale of spike count Fano factors
observed in experiments. Membrane potential correlation matrices are
generated algorithmically by specifying the width of the distribution
with a scalar parameter (Lewandowski et al. 2009). Distribution of
membrane potential correlations were tuned such that the distributions
of spike count correlations were matched for the RG and DSP models.

Simulation of changes in stimulus orientation is straightforward
since tuning curves define the changes in membrane potential mean,
while other aspects of the statistics are assumed to be unchanged.
Indeed, earlier studies on membrane potential variance have demon-
strated that variance is mostly invariant to changes in stimulus
orientation (Finn et al. 2007). The question of the orientation depen-
dence of membrane potential correlations is still open but we took a
conservative approach by assuming orientation independence at the
level of membrane potential correlations. Modulation of stimulus
contrast was simulated by modulating both the tuning curve and the
level of variance. Lowered contrast was modeled by a contrast-
invariant modulation of tuning curves that corresponded to a scaling
of the gain of the tuning curve. Variance was increased in a homo-
geneous manner across the population: decreased contrast resulted in
an increased variance. Direct effect of contrast change on membrane
potential correlations is an open question; therefore we split the
analysis into two parts. First, we analyzed contrast-dependent modu-
lation of spiking statistics with contrast-independent membrane po-
tential correlations. Second, inspired by indirect evidence of the effect
of contrast on membrane potential synchrony (Tan et al. 2014), we
simulated contrast-dependent change in membrane potential correla-
tions by inhomogeneously modulating pairwise correlations resulting
in a shifted population mean.

When the membrane potential statistics of the cell populations were
fully defined, we simulated membrane potential responses by taking
membrane potential samples from the population of 50 neurons. A
single trial was 500 ms long; the number of trials was 1,000. The
samples were then transformed to instantaneous firing rates by the
rectifier nonlinearity (Eq. 2), and then spike counts were obtained by
using the DSP and RG spiking models.

Electrophysiological data. To test the predictions of the models, we
analyzed spiking data from electrophysiological recordings. Aiming
for population-level characterization of responses puts constraints on
the kind of measurements that are applicable for comparison. As
anesthesia is known to introduce significant biases in neuronal re-
sponse correlations (Ecker et al. 2014), we sought to test model
predictions against data recorded from awake animals. We used
publicly available data recorded in the laboratories of Matthias Bethge
and Andreas Tolias (Ecker et al. 2010). Detailed description of the
recording settings are available at the original publication. Briefly,
single-unit recordings were obtained by extracellular electrode arrays
from a population of direction selective cells (comprising both simple
and complex cells) in V1 of awake monkeys. Stimuli consisted of
static and moving full-field gratings. We constrained our analysis to
static gratings because the static grating data set featured multiple
contrast levels besides eight grating orientations. Using static gratings
ensured that both simple and complex cells could be modeled solely
by setting up tuning curves to define direction selectivity. Further-
more, because of the firing rate dependence of spike count variance,
spike count correlations are prone to be underestimated when neural
responses depend on stimulus phase, which effect can be prevented by
using static stimuli. We used 400-ms segments extracted from the
evoked activity period of the trials in which the spike counts were
calculated.

To reliably estimate pairwise correlations, we needed to exclude
some of the recordings. We only considered pairs in which both units
had an average firing rate over 0.1 Hz to avoid biased correlation
estimates due to the insufficient number of spiking events. Pilot
analyses (data not shown) have demonstrated that low number of
stimulus repetitions can lead to highly inconsistent estimates of the
spike count correlations; therefore we only included recording ses-
sions in which the number of repetitions was sufficiently high. Using
a limit over trial repetitions between 30 and 40 ensures that the
variance of the correlation estimates does not exceed 0.03 for small
and 0.02 for large correlation levels (Kenney and Keeping 1951).
Thus we included five sessions in the analysis, with repetition num-
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bers (39, 40, 85, 72, 39). The filtering criteria for firing rates and trial
numbers allowed us to use 41 units from the recordings.

To be able to compare spike count correlations for preferred and
nonpreferred stimuli, we used a broader definition of preferred orien-
tation. A stimulus orientation was taken as belonging to a specific
neuron’s preferred orientation if the firing rate of a unit averaged over
the trials belonging to the given orientation was higher than the
average firing rate over all trials. This binary classification scheme
helped us to avoid errors in orientation preference estimation and in
the same time lead to more reliable estimation of correlations in the
nonpreferred condition, since including only the orientation perpen-
dicular to the most preferred one would have produced very low firing
rates. Preferred-orientation correlations were calculated for neurons
where the orientation of the stimulus was preferred for both neurons
of the pair.

Analysis of neural responses. We characterize the distributions of
spiking responses of neurons up to second-order statistics, similarly to
the descriptions of membrane potentials. However, due to specific
properties of spike trains, the applied measures are slightly different.
Spike count responses are characterized by variances that grow
linearly with spike count means. Therefore, we are interested in
changes in the variance that are independent of changes in the mean.
By using Fano factor, we can control for this effect and can obtain a
trial-by-trial measure of response variability for neuron n:

FF�st
n�t �

Var�st
n�t

E�st
n�t

(5)

The choice is also supported by the fact that systematic changes in
the membrane potential variance are similarly observed in the spike
count Fano factor, as described by Churchland et al. 2010.

The second-order statistics of a population of N units with temporal
dynamics is completely characterized by N autocorrelation functions
and N(N � 1) ⁄2 cross-correlation functions, specifying the linear
dependence between each pair at every timescale (Moreno-Bote et al.
2008). While correlations may occur at different timescales, it is a
typical choice in experiments to use the correlation of spike counts
over entire trials. Doing so has the advantage of taking interactions
with different delays into account similarly, by sacrificing the finer
temporal structure of coactivations (Smith and Kohn 2008). To
account for irregularities in the firing rates and individual variances of
experimentally recorded spike trains, correlations are calculated be-
tween z-scored spike counts, defined as follows:

|ij � Corr� st
i � E�st

i]t

SD�st
i]t

,
st

j � E�st
j]t

SD�st
j]t

�
t

(6)

RESULTS

We explored two models of neuronal spiking in V1 to test
the effects of stimulus-change-related modulations of spiking
statistics, focusing on the assessment of modulations of pair-
wise statistics. The DSP model and the RG model differ in the
sources of the variability the models assume. Instantaneous
firing rate of the models is defined in an identical manner but
they differ in the way spikes are generated. The DSP model
introduces substantial variability during the spike-generation
process while the RG model introduces only a minimal amount
of variability at this stage. Below we provide a brief overview
of the main features of the models.

The DSP model builds on extensive data showing a linear
relationship between spike count mean and spike count vari-
ance (Britten et al. 1993; Softky and Koch 1993; Tolhurst et al.
1983), which motivated a model of spiking activity that as-
sumes a Poisson process at spike generation. The basic Poisson
assumption constrains both the level of variability and the form

of covariability. The noise introduced by the Poisson process is
“private” to the neuron and therefore covariability is not
accounted for by this source of variability.

Variability of spiking activity is characterized by the Fano
factor. A Poisson process with a constant mean, i.e., constant
firing rate, has a Fano factor of 1. Rate modulation, such as
those induced by changing stimulus attributes like phase of a
grating stimulus, can introduce additional variability (so called
stimulus variability), thus the Fano factor can exceed 1. How-
ever, earlier studies have found changes in Fano factor that
cannot be derived from the linear relationship between the
mean and variance assumed by a Poisson account: in V1 Fano
factor was shown to shrink when increased mean response was
induced by stimulus contrast (Churchland et al. 2010; Orbán et
al. 2016). A further motivation for extending the Poisson
model is the form of covariability it assumes.

Covariability can be introduced in a network of Poisson-
spiking neurons by joint rate modulation. Indeed, this modu-
lation was shown to account for top-down modulation of
spiking responses in V1 (Ecker et al. 2014; Goris et al. 2015).
This form of joint modulation formally means a completely
correlated modulation of firing rates. We relaxed the assump-
tion of completely correlated firing rates to be able to tune both
variability and covariability: a multivariate normal distribution
was used to model an additional source of variability indepen-
dent of the Poisson stochasticity. To increase the compatibility
of this model with the formulation of the RG model, we
assumed that this stochasticity was fed into the firing rate
through a firing rate nonlinearity. Although the firing rate
nonlinearity is not a necessary component of the Poisson
model, this novel source of stochasticity has an intuitive
interpretation: it can be regarded as a subthreshold variability.
Based on different parametrizations of the multivariate normal
distribution of the “membrane potential” dynamics, both the
Fano factor and spike count correlations could be controlled
largely independently of the firing rate of the model neurons.
To obtain an instantaneous firing rate, the membrane potential
was sampled from the multivariate normal distribution, and
consecutive samples were assumed to be independent across
20-ms time bins. Independence of samples is a simplifying
assumption and was motivated by the fast-decaying autocor-
relation function of V1 neurons (Azouz and Gray 1999). The
nonlinearity to obtain firing rates was reflecting the nonlinear-
ity found in simple cells of V1 (Carandini 2004) (Fig. 1).

In the RG model a single source of stochasticity was as-
sumed, which was a stochastic process at the level of mem-
brane potential (Dorn and Ringach 2003). Intracellular mea-
surements in awake animals have confirmed that stimulus-
evoked activity of single neurons can be well characterized by
a normal distribution (Haider et al. 2013; Tan et al. 2014) and
using a multivariate form of this distribution is a natural
extension to model covariability between neurons. Again, we
approximated traces of membrane potentials as being indepen-
dently sampled in discrete time bins (Fig. 1A). Membrane
potentials were mapped through the same nonlinearity as in the
DSP model, which ensured a similar evolution of firing rate
with increased mean membrane potential (Fig. 1B). Spikes
were obtained by a process that bears as little stochasticity as
possible: firing rate was integrated over time and spikes were
generated when the integral crossed integer values (Fig. 1D).
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While this model does not rely on a Poisson process to ensure
the scaling of spike count variance with the mean, it has been
demonstrated to account for the approximately linear relation-
ship between spike count mean and spike count variance under
physiological conditions (Carandini 2004). This relationship is
solely a result of the interaction of the subthreshold variability
and the firing rate nonlinearity: as the mean membrane poten-
tial increases, the firing threshold together with the convex
firing rate nonlinearity maps the range in which the membrane
potential is varying onto an increasingly wider range of firing
rates. Importantly, a consequence of this mechanism is that
when the mean membrane potential is high, the effect of
nonlinearity realized by the threshold is reduced since the
variability results in less frequent threshold crossings. As a
consequence, at high firing rates the rate of change in the
variability of firing rate will decrease, ultimately resulting in
reduced Fano factor, as also confirmed by recordings from V1
neurons (Carandini 2004).

Identical parametrization of the models means that the num-
ber of parameters characterizing the models are equal; thus the
expressive power of the two models is similar. Parameters
were established based on previously published data (see
MATERIALS AND METHODS) (Carandini 2004). There are important
differences, however, in the statistics of spiking activities the
two models predict (Fig. 2, A and B. Assuming identical
distributions for membrane potentials for a pair of model
neurons, the firing rate nonlinearity and consistent spike gen-
eration processes ensure similar mean spike counts (Fig. 2C).
The variances, however, differ for the two models: while the
variance of responses of RG model neurons is dominantly
determined by the appropriately scaled variance of the mem-
brane potentials, the variance of the DSP model is the sum of
the membrane potential variance and a term coming from the
Poisson stochasticity. As a result, spike count variance, as well
as Fano factor, of the DSP model exceeds that of the RG model
(Fig. 2C). The correlation measured from the spike count
distribution can differ from the membrane potential correla-
tions as a result of multiple factors (Cohen and Kohn 2011;
Ecker et al. 2010). Most importantly, the firing rate nonlinear-

ity can truncate the subthreshold part of the membrane poten-
tial distribution causing a decrease in spike count correlations
relative to the membrane potential correlations (de la Rocha et
al. 2007), which is evident for the RG model (Fig. 2B). Another
important consequence of the excess private variability intro-
duced by the Poisson spike generation process is a drop in the
spike count correlation (Fig. 2C). A simple intuition for this
effect can be obtained by considering that the covariance
matrix of the spike count correlation is the sum of the mem-
brane potential covariance and the covariance of the spike
generation. The latter, however, is a diagonal matrix, as this
source of noise is independent among neurons; therefore it only
increases the diagonal elements of the resulting covariance
matrix, and, since correlation is the ratio of the covariance and
the geometric mean of the variances, there is an overall
decrease in the magnitude of correlations.

In the coming sections we analyze the consequences of these
differences in simplified models of a pair of neurons before
moving to the analysis of the pairwise response statistics of
populations of neurons. When using the simplified models we
do not simulate the tuning curve-mediated changes in mem-
brane potentials; rather, we directly investigate the effects of
changes in membrane potential statistics. These analyses pro-
vide predictions on changes in spike count statistics expected
in response to changes in stimulus orientation and contrast.

Matching spike response statistics. To be able to contrast the
effects of stimulus change on response statistics of the com-
peting models, we first establish a method for matching the
spiking statistics of the DSP and RG models in a pair of
neurons. Since equal membrane potential statistics lead to
different spiking statistics, it is clear that either membrane
potential statistics or parameters of the firing rate nonlinearity
need to be adjusted to have matching firing rates, Fano factors,
and spike count correlations. To keep our arguments simple,
we keep the firing rate nonlinearity unchanged. In fact, the
scale of membrane potential (which is determined together by
the distance of the membrane potential from the firing rate
threshold and the variance of the membrane potential) and the
scale of firing rate nonlinearity (parameter k) can be altered
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Fig. 2. Spike response statistics for the DSP and RG models. A and B: spike count distribution for a pair of model neurons with the same membrane potential
statistics (mean, variance, correlation) for DSP (A) and RG models (B) in a simulated 100-ms time window. Membrane potential means and variances were
identical for the 2 neurons and membrane potential correlation was set to 0.25. Circles indicate spike counts for individual trials. Cross shows the across-trial
mean while ellipse represents the across-trial covariance ellipse of the joint spike count distribution. Small jitter was added to spike counts for illustration
purposes. C: while the spiking models are consistent in predicting equal mean spike count responses for both DSP (dark bars) and RG models (light bars) at
matching membrane potential distributions, Fano factors and spike count correlations show characteristic differences. Note that spike count correlations are
systematically lower than membrane potential correlations at both models.
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largely interchangeably (see Fig. 4, G–I); therefore the argu-
ment can be translated into changes in the scale parameter of
the firing rate. The DSP and RG models reside at two extremes
of the spectrum of doubly stochastic processes: DSP features
high level of variance at spike generation while RG demon-
strates minimal variability at that point. It has been established
that spike count is not sufficient to uniquely determine the
spiking model (Amarasingham et al. 2015) even if Fano factors
and spike count correlations are also fixed. This finding ensures
that matching the second-order spiking statistics is possible for
a particular setting of spiking mean, variance, and covariance,
but it does not ensure that modulating one aspect of the
response statistics will result in equal changes in other aspects
of response statistics at both the DSP and RG models.

By exploring membrane potential parameters for the two
models, we can obtain a parameter setting where firing rates
(Fig. 3A) and Fano factors (Fig. 3B) are matched. Both of these
criteria constrain the parameter sets up to a linear combination
of the tested parameters, and therefore the intersection of the
lines allows matched firing rate and Fano factor. Difference
between the spike count correlations along the explored pa-
rameter range is relatively untouched (Fig. 3C) and can be
adjusted by tuning membrane potential correlations. The re-

sulting statistics-matched models (Fig. 3, D–F) have markedly
different membrane potential variances (0.2 and 2.75 mV2 for
the DSP and RG models, respectively) and different membrane
potential correlations (0.95 and 0.13 for the DSP and RG
models, respectively). Because of the extra variance and the
decorrelation effect of the DSP model, these differences are
expected and highlight that the Poisson process introduces a
private variability that can easily wash out membrane potential
correlations. While the level of membrane potential correla-
tions required in the DSP model seems to be extreme, it only
serves the purpose of matching the spiking statistics. At lower
firing rates the excess variance added to the membrane poten-
tial covariance would be lower and therefore statistics match-
ing would require considerably lower membrane potential
correlations.

Dependence of second-order spiking statistics on the mem-
brane potential mean. The membrane potential mean in direc-
tion selective V1 neurons is sensitive to stimulus orientation.
To understand the effects incurred by orientation change on
spiking statistics, we need to separate the effects on different
aspects of the response statistics. Changes in membrane poten-
tial mean have obvious effects on the firing rate. Effects of
mean membrane potential on other characteristics of the re-
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sponse statistics are less straightforward. To be able to see how
the membrane potential mean changes affect Fano factors and
spike count correlations in DSP and RG models, we aim to see
changes in these measures independent of changes in firing
rates.

Membrane potential statistics are different in the statistics-
matched DSP and RG models. Therefore, we first establish
rates of change for the membrane potentials in the two models,
which guarantee that even upon deviating from the statistics-
matched levels of membrane potentials, the firing rates change
at a similar rate (Fig. 4A). Using this firing rate-matched
scenario, we can directly contrast mean-related changes in
Fano factors (Fig. 4B) and spike count correlations (Fig. 4C).
Fano factors are approximately equal (Fig. 4B) across the range
of membrane potentials for the DSP and RG models, which
resonates with the results of Amarasingham et al. (2015) that
single-cell spiking statistics are not sufficient to unambigu-
ously identify the spiking model even if responses are analyzed
for a wide range of stimulus parameters. Independence of Fano
factors from membrane potentials (Fig. 4B), and from firing
rates as well, confirms the original results of the RG model
(Carandini 2004) and is also expected for the DSP model.
Growing firing rate resulting from increased mean membrane
potential has a differential effect on spike count correlations in
the two models (Fig. 4C). In the DSP, increased firing rate
incurs increased private variability, which suppresses the con-
tribution of the membrane potential covariance to the total
covariance and therefore spike count correlation diminishes. In
the RG model, however, a different mechanism dominates:
increased mean activation results in a higher proportion of the
membrane potential covariance to be above firing threshold,
and, consequently, smaller truncation of this distribution boosts
the magnitude of the measured correlation (de la Rocha et al.
2007). Firing rate frequency adaptation might introduce a form
of collective change in firing rates. We briefly tested whether
the qualitative behavior of the models is affected by the
presence of firing rate adaptation (Ahmed et al. 1998). Our
two-neuron simulations confirmed that the mean membrane
potential dependence of spike count correlations is only mar-
ginally affected by firing rate adaptation. Taken together, under
controlled change in mean activity, spiking variability is rela-
tively insensitive to the choice of DSP or RG models. Analysis
of spike count correlations, however, provides opposing pre-
dictions for DSP and RG models when mean responses are
systematically changed.

Differential effects of the membrane potential mean on spike
count correlations in the DSP and RG models highlight an
opportunity to distinguish the spiking models when stimulus
orientation is varied. A detailed exploration of the evolution of
spike count correlation with changing membrane potential
mean can confirm the robustness of the effect seen on Fig. 4C.
We tested robustness by assessing spike count correlations at
different levels of membrane potential correlations (Fig. 4, D
and E). Analysis of the RG model reveals a monotonic rise of
the magnitude of spike count correlations from zero toward the
level of the membrane potential correlation as membrane potential
mean increases (Fig. 4E). This dependency of spike count corre-
lation on the level of excitation is reflecting the behavior of
Hodgkin-Huxley neurons that exhibit increasing spike count cor-
relation with elevated levels of current injections (Fig. 4J), In the
DSP model, the effect of a less truncated membrane potential

joint distribution, when a larger proportion of the distribution
gets above threshold, is shown at a low membrane potential
regime (Fig. 4D): at low levels of activations, a rise similar to
the RG model can be observed. The range of similar evolution
of spike count correlation in the DSP and RG models, however,
is severely limited (Fig. 4F) and can only be observed at
moderate firing rates but high Fano factors, which combination
is not characteristic of cortical neurons. Beyond that point, a
steady decline of spike count correlation takes place that
converges to zero (Fig. 4, D and F). Thus patterns in the
change of spike count correlations upon stimulus manipulation
can reliably remove the ambiguity between the DSP and RG
models.

The biphasic profile of membrane potential dependence of
spike count correlation raises the possibility that an increased
gain in the firing rate nonlinearity can simply scale the firing
rate profile of the DSP model. Thus the regime where the spike
count correlation is positively correlated with membrane po-
tential mean could possibly overcome the limited range shown
on Fig. 4D and could reach higher firing rates. We tested this
question by scaling the firing rate gain together with inverse
scaling of the membrane potential (Fig. 4G). To keep not only
the firing rate but also the Fano factor constant, the variance of
the membrane potential was also scaled together with the mean
and rate gain parameters (Fig. 4G). In the resulting setting we
could test a wide range of the gain parameter k, while keeping
the mean, the Fano factor, and the correlation of spiking
responses constant (data not shown). The firing rate profile was
identical for the different parameter settings (Fig. 4H). Impor-
tantly, the evolution of correlations was very close at different
settings of the gain parameter k, with no visible shift in the
membrane potential (or alternatively firing rate) value maxi-
mizing the correlation (Fig. 4I). This analysis demonstrates that
the regime where increasing correlations are present with
increasing firing rates is constrained to low firing rate levels
and high Fano factors.

Firing rate nonlinearity has a major contribution both to
shaping the response variability (Fano factor) and the correla-
tion between neuronal responses. To gain an insight into the
effects of firing rate nonlinearity, we used analytical calcula-
tions to assess the evolution of response statistics at two forms
of firing rate nonlinearity: at the threshold-linear model (cor-
responding to an exponent of 1) and at the threshold-quadratic
model (corresponding to an exponent of 2). Analytical results
can be obtained for normal-distributed subthreshold activity
with threshold-power-law nonlinearity at integer exponents
(Hennequin and Lengyel 2016). These calculations approxi-
mate our RG model well, and can be easily extended to the
DSP model. Firing rate responses in the case of a threshold-
linear firing rate transformation are characterized by a soft-
threshold behavior (Fig. 5A), which is a consequence of re-
sponse variability: while the membrane potential is trans-
formed through a hard threshold, membrane potential variance
affects the mean firing rate, which results in a gradual trans-
formation. Membrane potential mean dependence of Fano
factors (Fig. 5B) reveals opposing trends for the different firing
rate exponents, indicating that the firing rate independence of
Fano factor, characteristic of Poisson spiking, is sensitive to the
choice of nonlinearity. Membrane potential dependence of
correlations (Fig. 5C) in the RG model are consistent at the two
firing rate exponents and confirm our findings using physio-
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in H and I). H: membrane potential dependence of firing rates is identical for the different gain levels, k (lines are overlapping). Membrane potentials are
normalized to the values established in D; diamond denotes the maximum on I. I: membrane potential dependence of correlations is similar across different levels
of the gain, k (gray lines). J: spike count correlation between a pair of Hodgkin-Huxley neurons at different current injection levels. Standard deviation of the
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of the neurons (curves of different current correlations overlap).
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logical firing rate exponents. Correlations in the DSP model,
however, show different patterns. At an exponent of one
membrane potential mean dependence of correlation qualita-
tively matches that observed at the firing rate exponent char-
acteristic of V1 neurons. At an exponent of 2 the DSP corre-
lation shows a qualitative behavior matching that of the RG
model: the correlation monotonously increases with increasing
membrane potential mean. At high-firing-rate exponent the two
interacting sources of variance at the DSP model cause a switch
in qualitative behavior. Increased mean firing rate increases the
variance of a Poisson process. Meanwhile the nonlinearity
stretches the variance (and covariance) of the normal distribution.
At higher values of the exponent, the stretching resulting from the
firing rate exponent overcomes the amount of stretch in the
variance resulting from the Poisson process, the covariance
elements of the normal distribution will dominate the zero-
covariance of the Poisson, and thus the correlation will grow.
This analysis highlights that different characteristics of re-
sponse statistics show joint changes with altered firing rate
exponents.

Dependence of spiking statistics on membrane potential
variance. Stimulus contrast was demonstrated to have a com-
bined effect on membrane potential mean and variance (Finn et
al. 2007): while the mean of the membrane potential response
shrinks as contrast goes to zero, membrane potential variance
grows. Thus changes in membrane potential response variance
have relevant consequences on the spiking statistics. To get
insights into the effects of joint changes in membrane potential
mean and membrane potential variance, we first explored these
characteristics separately and then turned to the combined
effects of parallel changes.

After the mean-dependent changes discussed in the previous
section, we set out to analyze the membrane potential variance
dependence of spiking statistics (Fig. 6). Similar to the protocol

followed at testing the effects of membrane potential mean, we
started from the matched-statistics DSP and RG models and set
the range of variance scaling such that the resulting firing rate
changes in the two models are approximately equal (Fig. 6A).
Again, this mean firing rate-matched approach ensures that
changes seen in the Fano factors and spike count correlations
are not related to differences in firing rates. Contrasting the
Fano factors at firing rate-matched settings of the DSP and RG
models revealed similar tendencies but slightly differing values
for the Fano factors (Fig. 6B). Increased membrane potential
variance translated into increased Fano factors in both of the
spiking models, but the DSP model was characterized by
systematically larger Fano factors at higher membrane poten-
tial variances (Fig. 6B). This difference is due to the excess
variance of the DSP model coming from the increased spike
count variance of the Poisson stochasticity at higher mean
spike counts. Changing membrane potential variance showed
conflicting effects in the two models on spike count correla-
tions (Fig. 6C). While the spike count correlation in the RG
model was relatively insensitive to changes in membrane
potential variance and thus firing rate, the DSP model was
shown to exhibit increased spike count correlation with in-
creased membrane potential variance (Fig. 6C). This increase
can be easily understood by recognizing that a scaled mem-
brane potential covariance results in a larger relative contribu-
tion of the membrane potential covariance to the total covari-
ance, thus the spike count correlation will be more dependent
on the correlated membrane potential stochasticity than on
uncorrelated spiking stochasticity. Thus analysis of the depen-
dence of spike count statistics on membrane potential variance
reveals that DSP and RG models can be distinguished based on
spike count correlation of the responses when subthreshold
variance is modulated.
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Contrast change incurs concomitant changes in membrane
potential mean and variance. Based on the previous analyses
we can conclude how these parallel changes interact when the
spiking statistics are considered in response to a stimulus at
lower contrast. In terms of firing rate, decreased mean mem-
brane potential and increased variance due to reduced contrast
have opposing effects, but the effect of decreased membrane
potential dominates patterns in firing rate (Fig. 6D). In terms of
Fano factor, it is the change in variance that causes increased
Fano factors in both models (Fig. 6E). In terms of spike count
correlations, the two models have distinct predictions (Fig.
6F). It is only the change in the mean membrane potential that
contributes to a shrinking magnitude of correlations in the RG
model (Fig. 4, C and E). In the DSP model, one component
contributing to contrast-related changes is the increased vari-
ance, which causes larger spike count correlations (Fig. 6C).
The effect of decreased mean seems to be more complex: it
results in increased correlations in a wide range of parameters
and decreased correlations in a specific subspace of the param-
eters (Fig. 4F). Remarkably, this subspace is characterized by
low firing rates and relatively high Fano factors. In summary,
contrast modulation-related changes in membrane potential
variance introduce changes in Fano factors and spike count
correlations in both models. The magnitude of the variance
change determines the difference in Fano factors between

high-contrast and low-contrast conditions but the direction of
deviation is the same for both models. Contrast has opposing
effects on spike count correlations in the two models. In the
DSP model both increased membrane potential variance and
decreased membrane potential mean incur higher spike count
correlations at lower contrast levels. In the RG model, how-
ever, excess variance does not affect spike count correlations
and therefore changes in spike count correlations are solely
determined by changes in mean membrane potential which
ultimately results in decreasing correlations with decreasing
contrast. Thus, similar to stimulus orientation-related changes
in the two-neuron model, changes in stimulus contrast induce
changes in the spike count correlations that distinguish the DSP
and RG models.

Contrast- and orientation-dependent modulation of spiking
correlations in a population of direction selective neurons. To
test the predictions of the two models against experimental
data, we simulated the activity of a population of V1 direction
selective neurons in response to changes in stimulus. As
demonstrated by our analysis of the two-neuron model, stim-
ulus change-related changes in variability do not distinguish
between the DSP and RG models. Therefore it is expected that
population distributions of Fano factor are indistinguishable
too. Spike count Fano factors show little dependence on
stimulus orientation and are increased when stimulus contrast
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is lowered (Orbán et al. 2016), as predicted by both spiking
models. As a consequence, we focus on the analysis of stim-
ulus dependence of correlated variability in spiking responses
of a population of V1 neurons.

We tested how decreasing stimulus contrast affects the
population distribution of spike count correlations in the two
models and compared the results to experimental data. Tradi-
tionally, studies focus on the population mean of the distribu-
tion of correlations; however, as positive and negative corre-
lations may be affected differentially by stimulus manipulation
(as in Fig. 4, D and E), it is important to take the shape of the
distribution into account as well. In particular, we focused on
the change in the standard deviation of the spike count corre-
lation distribution from lower to higher contrast stimuli
(�SDctr). First, we assumed that contrast affects the mean and
variance of the membrane potential responses but leave corre-
lations intact and investigated the effects of varying membrane
potential correlations in a subsequent analysis. We set up two
populations of 50 model neurons each, implementing different
spiking profiles corresponding to the DSP and the RG models.
We simulated membrane potential activity using tuning curve

responses to a full-field grating stimulus (see MATERIALS AND

METHODS). Single-cell spiking statistics in the model popula-
tions were matched (mean firing rates were 7.9 and 5.4 Hz;
mean Fano factors were and 1.1 and 0.9 in the high-contrast
condition in the DSP and RG populations, respectively). The
membrane potential correlations in the two populations were
chosen such that mean and width of the two spike count
correlation distributions are matched at high-contrast stimulus
presentation (Fig. 7, A and B, insets). Constructing membrane
potential covariance matrices such that they reflect the corre-
lation between spike count correlations and similarity in ori-
entation preference (Lin et al. 2015) did not affect the results
(data not shown). The distribution of spike count correlations
was tuned to have width and mean comparable to physiological
values observed in the data recorded (�0.02 and 0.16 for the
mean and standard deviation in high-contrast conditions, re-
spectively) (Ecker et al. 2010). The distribution was wider for
membrane potentials than for spike counts both in the case of
the DSP and RG models and, as expected from previous
analyses, the membrane potential correlation distribution was
wider for the DSP model (0.42 and 0.22 for the DSP and RG
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Fig. 7. Comparison of model predictions with experimental data: effect of stimulus contrast. A: Cumulative distributions (CDF) of pairwise spike count
correlations in a simulated population of 50 DSP neurons in response to a low-contrast (LC) and high-contrast (HC) stimulus, using membrane potentials (MP)
from tuning curves proportional to the contrast. Insets show the histogram of membrane potential correlations and the spike count correlation histograms
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C: distributions of measured spike count correlations in response to grating stimuli of 10 and 100% contrast (data from Ecker et al. 2010). D: distributions of
�SDctr, in 100 simulated sessions using the 2 model populations, error bars representing 95% confidence intervals (CIs). E: �SDctr in the experimental sessions.
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models, respectively). Lowering the stimulus contrast made the
spike count correlation distribution wider in the DSP popula-
tion (Fig. 7A). The increase in the magnitude of the correlations
at lower contrast levels is a direct consequence of the effect
demonstrated in a pair of neurons (Fig. 6F), namely that lower
firing rates and increased membrane potential variance tilts the
balance between correlated membrane potential and indepen-
dent spiking variability toward the former. Conversely, in the
RG population, the correlation distribution becomes narrower
with decreasing stimulus contrast (Fig. 7B). This effect is again
in agreement with the results from the analysis of a pair of
neurons (Fig. 6F).

Analyzing population responses from V1 reveals contrast-
dependent changes in the distribution of spike count correla-
tions. The distribution of spike count correlations is narrower
in response to low-contrast stimuli than in response to high
contrast (standard deviations of 0.16 for high and 0.12 for low
contrast, respectively; Fig. 7C). The uncertainty of these esti-
mates was assessed by bootstrapping (discarding 20% of all
pairs 5 times), providing an estimate for the standard error of
mean for the change in the standard deviation of the spike
count correlation distribution. The same analysis was per-
formed for the two model populations to obtain a comparable
estimate of uncertainty using 100 simulations and 41 randomly
selected units, similar to the number of single-units available
from the experiment. Repeated simulations were necessary to
assess the uncertainty of the statistical estimates arising due to
the limited population size. �SDctr was significantly positive in
the experiment (Fig. 7G, one-sample t-test t(4) � 2.96, P �
0.042), similarly to the RG model (standard deviation of 0.08
and 0.06 in the high- and low-contrast conditions, respectively,
P � 0.010; Fig. 7G).This result is in contrast with the negative
�SDctr in the DSP model (standard deviations of 0.051 and
0.060 in the high- and low-contrast conditions, respectively,
P � 0.040; Fig. 7G). Changes in the mean of correlations are
relatively small and are consistent across both models and
experimental data (in the experimental population, �0.015 and
0.001 in the high- and low-contrast condition, respectively,
one-sample t-test t(4) � �1.27, P � 0.27; in the DSP popu-
lation, 0.004 and 0.009, P � 0.010; in the RG population,
0.009 and 0.012, P � 0.38; Fig. 7F).

The membrane potential statistics in both models were
chosen to match the spiking statistics in the analyzed data set
as precisely as possible. However, we do not have a direct
assessment of the correlation distribution nor of the private
response statistics of the membrane potential. Thus, to test the
robustness of the dissociation of the two models by contrast-
related changes in spike count correlations, we explored how
much �SDctr depends on the specific settings we used in the
model. In the case of the RG model, intuitions obtained from
the two-neuron analysis confirm that the positive �SDctr is
robust against changes in parameters. In the case of the DSP
model, however, the specific settings might affect the sign of
�SDctr (see Fig. 7, B and C). We varied the magnitude of
membrane potential correlations in the DSP model to assess
whether the sign of �SDctr could be reversed at specific
settings. Simulations confirmed that this manipulation is not
capable of reproducing the experimentally observed pattern
(�SDctr being significantly or nonsignificantly negative at all
tested values; Fig. 7H). The analysis described in Fig. 7
motivated us to investigate whether �SDctr could also be

positive in the DSP model population when intensively de-
creasing means and increasing variances concomitantly in the
membrane potential. Such changes did not produce a positive
�SDctr within (nor substantially above) the Fano factor range
plausibly observed in measurements (the changes being signif-
icantly or nonsignificantly negative at all tested values; Fig.
7I). These analyses highlight that second-order statistics of
population responses to contrast-varied stimuli reliably dis-
criminate between the DSP and RG models of neural spiking
and it is the RG model that provides predictions compatible
with contrast change-related data.

Experimental studies suggest that changes in stimulus con-
trast might be reflected in changes not only in mean and
variance of membrane potentials but also in correlations (Tan
et al. 2014). We investigated this possibility by assessing how
much �SDctr changes in the models if the magnitude (average
absolute value) of membrane potential correlations changes
with contrast. Simultaneously, we tested different levels of
changes in the membrane potential mean (which was multi-
plied by a factor of 2 from the low- to the high-contrast
stimulus in the analyses described above), and the average
absolute value of correlations (which did not change between
the two contrast conditions in the analyses shown in Fig. 7).
The larger the increase was in the membrane potential mean
with contrast, the larger the reported effect was in �SDctr (Fig.
8). As the analysis of Tan et al. (2014) indicated a decrease in
membrane potential correlations with increasing contrast, av-
erage membrane potential correlation ratios below 1 are of
particular interest. At higher levels of increase in the mean,
�SDctr in the RG population remains positive for 10 or 20%
decreases in membrane potential correlations, while in the DSP
population it is consistently negative.

When using grating stimuli, a well-controllable manipula-
tion of stimuli besides stimulus contrast is altering the grating
orientation. Thus we compared model predictions in response
to such changes with experimental data as well, in particular
regarding the change in the standard deviation of the spike
count correlation distribution from nonpreferred to preferred
contrast stimuli (�SDori). Population models are constructed in
an analogous manner to the analysis of contrast dependence.
Preferred orientations are uniformly distributed, and therefore
a simple orientation change is not expected to cause changes in
population response statistics. Therefore, to assess orientation-
related changes in population responses, we needed to separate
neurons that respond strongly to a specific orientation from
those that respond weakly to the same stimulus. We classified
any particular orientation as preferred or nonpreferred orienta-
tion based on whether the response of the neuron was above or
below its average response intensity. To construct distribution
of correlations for preferred and nonpreferred directions, pairs
of cells were selected based on whether both of the cells had
the actual stimulus among their preferred orientation or both
had it among their nonpreferred orientations. Simulation re-
sults were contrasted with recordings of populations of V1
single-units (Ecker et al. 2010) in which we also separated
pairs of units observing preferred and nonpreferred stimuli (see
MATERIALS AND METHODS). In the experimental data set, we
observed a positive �SDori (standard deviations of 0.15 for
preferred and 0.10, for nonpreferred stimuli, one-paired t-test
t(4) � 6.33, P � 0.003; Fig. 9, C and E). In the DSP popula-
tion, �SDori was not significantly different from zero (standard
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deviations of 0.05 and 0.05, P � 0.31; Fig. 9, A and E). In the
RG population, the �SDori was positive (standard deviations of
0.09 and 0.07, P � 0.120; Fig. 9, B and E). Similar to the
simulations and to the experimental data of contrast depen-
dence of responses, changes in the means of correlation distri-
butions were small (in the experimental population, �0.001
and 0.001 in the preferred and nonpreferred condition, respec-
tively, one-sample t-test t(4) � �0.20, P � 0.85; in the DSP
population, �0.001 and 0.015, P � 0.50; in the RG population,
0.009 and 0.007, P � 0.39; Fig. 9D). Varying the membrane
potential mean, variance, and correlation values in the DSP
model revealed that such tuning is incapable to produce the
significantly positive �SDori observed in the experiment (Fig.
9, F and G). While experimental results do not provide a direct
dissociation between the two models in terms of predictions
related to the dependence of correlations on orientation pref-
erence, they are reproduced without any particular tuning of
model parameters in the case of the RG model, but the DSP
model can only account for the patterns in experimental data
with specific parameter tuning.

DISCUSSION

We analyzed a pair of widely used models of spiking to
investigate their power to predict stimulus-dependent changes
not only in single-cell statistics but in joint statistics of activity
too. The DSP model (Gur et al. 1997) assumes stochastic
spiking to account for linear scaling of spike count variance
with spike count mean and relies on a separate stochastic
process to model the covariance structure of spiking responses.
The RG model (Dorn and Ringach 2003) assumes a single
source of stochasticity at the level of membrane potentials but
relies on a quasi-deterministic process of spike generation. We
have demonstrated that, while in terms of single-cell statistical
measures the models make similar predictions for stimulus
change-related modulations in response statistics, predictions
on pairwise correlations are distinct. In a model of a pair of
neurons, simulated changes in stimulus orientation and stimu-

lus contrast revealed opposing changes in spike count correla-
tions. The key intuition behind this finding is that the level of
spike count correlation with a given level of membrane poten-
tial correlation is determined by two phenomena: 1) higher
mean membrane potential implies higher magnitude spike
count correlations (de la Rocha et al. 2007) and 2) higher firing
rate implies lower level of spike count correlations when
private variability scales with spike count mean. The interac-
tion of these two processes result in opposing changes in the
correlation structure of the population. To assess which of the
two models is compatible with neural recordings, response
statistics of a population of neurons was simulated in both
models and contrasted with response statistics of neurons
recorded in V1 of awake monkeys. We have shown that the
predictions of the RG model are in line with electrophysiolog-
ical data while the DSP model is not capable of reproducing the
patterns of noise correlations in V1 neurons. Our analyses
highlight that joint responses can inform us on the possible
building blocks of population models and also highlight that
the width of the correlation distribution carries information
beyond the mean of the distribution. These analyses provide
important constraints on the models that can be used effec-
tively to characterize computations in neural populations.

In our analysis we adopted an approach where we focused
on matching the single-cell spike count statistics of the models
without particular emphasis on the interpretation of the actual
levels of membrane potentials. This approach is motivated by
the aim to directly contrast changes in pairwise spiking statis-
tics between the two models. It is obvious that tuning the
membrane potential parameters of the two models separately
could result in membrane potential values that are easier to
interpret physiologically. Nonetheless, the assumptions of the
DSP model necessitate choices that are hard to reconcile with
neuronal data. For instance, in the analysis of the pair of
neurons we used a membrane potential correlation of 0.95 in
the DSP model to obtain a spike count correlation level
matching that of the RG model (~0.1) when firing rate was ~35
Hz. In the population model of spiking statistics less extreme
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values were used; still, the tendency of the DSP model to wash
out correlations necessitated a wider correlation distribution for
the DSP than for the RG model.

To make use of a limited amount of data without detailed
characterization of receptive fields we adapted an approach for
modeling population activity that required the fitting of popu-
lation distributions of single-cell activity statistics to measure-
ments, and not to individual cells. Using data sets containing a
high number of stimulus repetitions and additional receptive
field characterizations for recorded units would enable the
fitting of response statistics of model units to measurement and
a direct comparison of the models under the specific recording
conditions used in the experiments.

We chose to use independent temporal evolution for mem-
brane potentials, which meant independent membrane potential
samples in fixed, short time intervals. This was motivated by
the relatively fast decay of membrane potential correlations
(Azouz and Gray 1999). This treatment explicitly incorporates
within-trial variability to model the shared variability of neu-
rons. This is in contrast with other models of response vari-
ability (Ecker et al. 2016), which consider processes that
produce trial-to-trial variability since changes in attentional
modulation occur on a slower timescale. We argued in the
paper that spiking statistics provide constraints on the spiking

models; therefore we believe that patterns in the auto- and
cross-correlation functions (Smith and Kohn 2008) provide
further constraints on neural models of spiking. Estimation of
the amount of variability that is not caused by stimulus varia-
tion is contaminated by uncontrolled variability introduced by
eye movements (Gur et al. 1997; Gur and Snodderly 2006).
Eye movements affect both Fano factor and correlation esti-
mations (McFarland et al. 2016) and their contribution cannot
be ruled out in the case of the data analyzed here. Our critical
conclusions, however, concerned changes in correlations rather
than the magnitude of correlations. These measurements would
only be affected by eye movements if the statistics of eye
movements changed across the tested conditions. While
changes in eye movement statistics can in principle be a
consequence of altered contrast, it is not relevant when orien-
tations are considered. Our analysis revealed qualitatively
similar changes in correlations both when changes in orienta-
tion and contrast were considered. Therefore we expect our
results to hold even if eye movement-related modulations of
variability were considered (McFarland et al. 2016).

Earlier investigations have revealed that identifying the
spiking model based on spiking statistics of neurons can be
challenging and can even be prohibitive under a wide range of
circumstances (Amarasingham et al. 2015). In our study we
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capitalized on the stimulus dependence of pairwise response
statistics to distinguish between the models. In their paper,
Amarasingham et al. (2015) argued that the covariance of a
pair of neurons is not sufficient to uniquely determine the
spiking model without extra assumptions being made on the
spiking covariance, which was formulated as a sum of firing
rate covariability and spiking covariability. We argued that
spiking is a process characteristic of an individual neuron, and
therefore the variability associated with this process is private
to the neuron. As a consequence, we assumed a spiking
covariance that is diagonal. Indeed, the assumption that spiking
variability is independent across neurons is the primary reason
for the differential effect of both stimulus contrast and orien-
tation on spike count correlations.

Recent studies using approaches close to our DSP model
(Ecker et al. 2016; Rabinowitz et al. 2015) discuss top-down
modulation of response correlations in contrast with the bot-
tom-up modulations discussed here. The important contribu-
tion of these models is that different forms of correlations in
spiking responses are explained based on simple computational
principles. The differences between those approaches and ours
are important and can be instructive for future work. First,
correlations are introduced at the level of firing rates instead of
membrane potentials. Since the variability is introduced before
spike generation, the conclusions of those studies can be easily
translated to our approach solely by assessing the effect of the
firing rate nonlinearity. Second, these studies used a single
scalar (or a low dimensional) stochastic variable to model gain
modulation of visual cortical neurons. The collective gain
modulation implies a firing rate correlation of 1 between those
neurons that share the modulatory signal. In our case correlated
activity was introduced by a multivariate stochastic process
that implements a softer coupling between neurons. Neverthe-
less, the analysis of the DSP model reveals that realistic firing
rates, Fano factors, and spike count correlations require a
surprisingly high level of coordination between neurons. Third,
the use of Poisson stochasticity in these models implies that
response variability explained by the model is constrained to
that beyond Poisson variability. Our analysis shows that the
RG model can be a more effective model for variability than
the DSP. Since the RG model only assumes a single source of
variability at the level of membrane potentials, it provides an
opportunity to account for a larger proportion of variability and
therefore provides an opportunity for models with better pre-
dictive power. As demonstrated here and in earlier studies
(Carandini and Ferster 2000), single-cell statistics is not dis-
tinctive for the two models at moderate firing rates, Fano
factors only start to deviate from a constant value at high firing
rates. Our results on distinctive patterns in pairwise correla-
tions highlight that once these correlations become relevant for
the analysis, special care is required to assess whether different
predictions on correlations can affect conclusions. This is
especially true for population-level analyses of neuronal re-
sponses where assessment of the joint statistics is quintessen-
tial for understanding processes underlying the collective be-
havior of neurons. The magnitude of the demonstrated effect
can be different under different experimental conditions. In
conditions where the stimulus drive is large strong signal
correlations are induced. Therefore the relative contributions of
noise correlations investigated here are expected to be smaller.
In conditions where stimulus-driven changes are absent, how-

ever, noise correlations have larger effect. The RG and DSP
models represent two extremes of a continuous scale of spiking
models: while RG assumes a deterministic spike generation
process, DSP relies on highly variable spike generation. Our
aim was to demonstrate qualitative differences of the predic-
tions of the two approaches. Models interpolating between the
extremes, including the negative binomial model of spike
generation (Lin et al. 2015), can be used to quantitatively
match physiological data.

Poisson-like firing has been used extensively in the literature
(Froudarakis et al. 2014; Goris et al. 2015; Jazayeri and
Movshon 2006; Ma et al. 2006; Ma and Jazayeri 2014; Pillow
2007; Simoncelli et al. 2004). Besides its capability to provide
a parsimonious explanation of the relationship between spiking
intensity and spiking variability, Poisson neurons have much
theoretical appeal too. First, Poisson-like spiking distribution
ensures that fitting network parameters is a convex optimiza-
tion problem, or, in other words, there is a single (global)
maximum in optimization (Paninski 2004). Second, in theories
of encoding information via populations of neurons, a Poisson-
like likelihood function provides a representation in which the
log likelihood contains linear terms, which enables simple,
neurally plausible computations (Jazayeri and Movshon 2006;
Ma 2006). In contrast with models based on the Poisson
assumption, alternative approaches have applied models that
have a closer relationship to the RG model (Brette and Gerstner
2005; Lin et al. 2015; Paninski 2004) and argued for the
capability of such models to predict both for single-cell re-
sponse properties (Brette and Gerstner 2005) and population
statistics (Lin et al. 2015). Response variability in these two
model classes is approached in two markedly different ways: in
one, stochasticity is part of the spike generation process; in the
other it originates before spike generation and can be related to
membrane potential-level processes. In this context, our study
contributes to the field by a direct and controlled comparison of
the predictions of these approaches on spiking statistics and
will help to identify the conditions under which they can
effectively be used.

Recent advances in modeling data recorded from a large
number of neurons have helped to assess neural responses in a
trial-by-trial manner and to relate them to variances in behavior
(Churchland et al. 2010; Yu et al. 2009), disentangle mixed
sensitivities (Kobak et al. 2016), eliminate noise by tracing
neural variability back to changes in latent factors (Machens et
al. 2010), and implement closed-loop brain-computer interfac-
ing (Sadtler et al. 2014). Modeling and predicting correlations
is a critical factor in population-level analyses of neuronal data
(Cunningham and Yu 2014). Those are precisely the correlated
changes in neuronal activity that help to eliminate the effect of
uncontrolled variables, to reduce apparent noise in the mea-
surements, and to predict the activity of missing neurons.
Furthermore, recent advances in functional interpretation of
population response statistics have pointed out that correlations
can be the hallmarks of computations taking place in the brain
that reflect adaptation (Orbán et al. 2016), attention (Haefner et
al. 2016), or task learning (Singh et al. 2016). Therefore, it is
crucial to have an adequate model of response variability that
can predict the effects of changes in stimulus on the correlation
structure. The stochasticity assumed to underlie observed spik-
ing variability can take on the form of Poisson variability
(Archer et al. 2014; Macke et al. 2011) or Gaussian noise (Yu
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et al. 2009; Sadtler et al. 2014). Our study aims to provide
constraints on the forms of stochasticity in these models by
emphasizing that bottom-up driven changes in the response
statistics can differentiate between alternative models. As dem-
onstrated in the paper, even when single-cell response statistics
have limited power to distinguish between alternative models,
joint statistics can reveal properties that are incompatible with
the predictions of one or the other. We expect that proper
understanding and characterization of stochasticity in the ner-
vous system helps to better interpret joint statistics and espe-
cially correlations present in the activity of neural populations.

ACKNOWLEDGMENTS

We thank M. Lengyel for useful discussions, D. G. Nagy for comments on
the manuscript, and especially A. Ecker, P. Berens, M. Bethge, and A. Tolias
for making their data publicly available.

GRANTS

This work was supported by a Lendület Award of the Hungarian Academy
of Sciences (G. Orbán, M. Bányai) and an award from the National Brain
Research Program of Hungary (NAP-B, KTIA_NAP_12-2-201). The authors
declare no competing financial interests.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

M.B. and G.O. conceived and designed research; M.B., Z.K., and G.O.
analyzed data; M.B. and G.O. interpreted results of experiments; M.B., Z.K.,
and G.O. prepared figures; M.B. drafted manuscript; M.B. and G.O. edited and
revised manuscript; G.O. approved final version of manuscript.

REFERENCES

Adrian ED. The impulses produced by sensory nerve endings: part I. J Physiol
61: 49–72, 1926. doi:10.1113/jphysiol.1926.sp002273.

Ahmed B, Anderson JC, Douglas RJ, Martin KA, Whitteridge D. Esti-
mates of the net excitatory currents evoked by visual stimulation of identi-
fied neurons in cat visual cortex. Cereb Cortex 8: 462–476, 1998. doi:10.
1093/cercor/8.5.462.

Amarasingham A, Geman S, Harrison MT. Ambiguity and nonidentifiabil-
ity in the statistical analysis of neural codes. Proc Natl Acad Sci USA 112:
6455–6460, 2015. doi:10.1073/pnas.1506400112.

Anderson JS, Lampl I, Gillespie DC, Ferster D. The contribution of noise to
contrast invariance of orientation tuning in cat visual cortex. Science 290:
1968–1972, 2000. doi:10.1126/science.290.5498.1968.

Archer EW, Koster U, Pillow JW, Macke JH. Low-dimensional models of
neural population activity in sensory cortical circuits. Adv Neural Inf
Process Syst 27: 343–351, 2014.

Azouz R, Gray CM. Cellular mechanisms contributing to response variability
of cortical neurons in vivo. J Neurosci 19: 2209–2223, 1999.

Berkes P, Orbán G, Lengyel M, Fiser J. Spontaneous cortical activity
reveals hallmarks of an optimal internal model of the environment. Science
331: 83–87, 2011. doi:10.1126/science.1195870.

Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an
effective description of neuronal activity. J Neurophysiol 94: 3637–3642,
2005. doi:10.1152/jn.00686.2005.

Britten KH, Shadlen MN, Newsome WT, Movshon JA. Responses of
neurons in macaque MT to stochastic motion signals. Vis Neurosci 10:
1157–1169, 1993. doi:10.1017/S0952523800010269.

Carandini M. Amplification of trial-to-trial response variability by neurons in
visual cortex. PLoS Biol 2: e264, 2004. doi:10.1371/journal.pbio.0020264.

Carandini M, Ferster D. Membrane potential and firing rate in cat primary
visual cortex. J Neurosci 20: 470–484, 2000.

Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A, Shadlen
MN. Variance as a signature of neural computations during decision
making. Neuron 69: 818–831, 2011. doi:10.1016/j.neuron.2010.12.037.

Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR,
Corrado GS, Newsome WT, Clark AM, Hosseini P, Scott BB, Bradley
DC, Smith MA, Kohn A, Movshon JA, Armstrong KM, Moore T,
Chang SW, Snyder LH, Lisberger SG, Priebe NJ, Finn IM, Ferster D,
Ryu SI, Santhanam G, Sahani M, Shenoy KV. Stimulus onset quenches
neural variability: a widespread cortical phenomenon. Nat Neurosci 13:
369–378, 2010. doi:10.1038/nn.2501.

Cohen MR, Kohn A. Measuring and interpreting neuronal correlations. Nat
Neurosci 14: 811–819, 2011. doi:10.1038/nn.2842.

Cunningham JP, Yu BM. Dimensionality reduction for large-scale neural
recordings. Nat Neurosci 17: 1500–1509, 2014. doi:10.1038/nn.3776.

de la Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A. Correlation
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Tkačik G, Prentice JS, Balasubramanian V, Schneidman E. Optimal
population coding by noisy spiking neurons. Proc Natl Acad Sci USA 107:
14419–14424, 2010. doi:10.1073/pnas.1004906107.

Tolhurst DJ, Movshon JA, Dean AF. The statistical reliability of signals in
single neurons in cat and monkey visual cortex. Vision Res 23: 775–785,
1983. doi:10.1016/0042-6989(83)90200-6.

Tolhurst DJ, Movshon JA, Thompson ID. The dependence of response
amplitude and variance of cat visual cortical neurones on stimulus contrast.
Exp Brain Res 41: 414–419, 1981.

Tomko GJ, Crapper DR. Neuronal variability: non-stationary responses to
identical visual stimuli. Brain Res 79: 405–418, 1974. doi:10.1016/0006-
8993(74)90438-7.

Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M.
Gaussian-process factor analysis for low-dimensional single-trial analysis of
neural population activity. J Neurophysiol 102: 614–635, 2009. doi:10.
1152/jn.90941.2008.

Yu J, Ferster D. Membrane potential synchrony in primary visual cortex
during sensory stimulation. Neuron 68: 1187–1201, 2010. doi:10.1016/j.
neuron.2010.11.027.

Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz D. Higher-order
interactions characterized in cortical activity. J Neurosci 31: 17514–17526,
2011. doi:10.1523/JNEUROSCI.3127-11.2011.

46 POPULATION ACTIVITY STATISTICS DISSECT VARIABILITY IN V1

J Neurophysiol • doi:10.1152/jn.00931.2016 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (074.073.248.166) on November 28, 2020.

http://dx.doi.org/10.1038/nn1790
http://dx.doi.org/10.1038/nn1790
http://dx.doi.org/10.1146/annurev-neuro-071013-014017
http://dx.doi.org/10.1523/JNEUROSCI.3276-09.2010
http://dx.doi.org/10.1126/science.7770778
http://dx.doi.org/10.1523/JNEUROSCI.4660-15.2016
http://dx.doi.org/10.1162/neco.2008.03-07-497
http://dx.doi.org/10.1016/j.neuron.2016.09.038
http://dx.doi.org/10.1088/0954-898X_15_4_002
http://dx.doi.org/10.1088/0954-898X_15_4_002
http://dx.doi.org/10.7554/eLife.08998
http://dx.doi.org/10.7554/eLife.08998
http://dx.doi.org/10.1016/j.conb.2014.02.013
http://dx.doi.org/10.1038/nature13665
http://dx.doi.org/10.1038/nature04701
http://dx.doi.org/10.1523/JNEUROSCI.2929-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.2929-08.2008
http://dx.doi.org/10.1038/nature13159
http://dx.doi.org/10.1073/pnas.1004906107
http://dx.doi.org/10.1016/0042-6989(83)90200-6
http://dx.doi.org/10.1016/0006-8993(74)90438-7
http://dx.doi.org/10.1016/0006-8993(74)90438-7
http://dx.doi.org/10.1152/jn.90941.2008
http://dx.doi.org/10.1152/jn.90941.2008
http://dx.doi.org/10.1016/j.neuron.2010.11.027
http://dx.doi.org/10.1016/j.neuron.2010.11.027
http://dx.doi.org/10.1523/JNEUROSCI.3127-11.2011

